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We analyze the dimension spectrum previously introduced and measured 
experimentally by Jensen, Kadanoff, and Libchaber. Using large-deviation 
theory, we prove, for some invariant measures of expanding Markov maps, that 
the Hausdorff dimension f(~) of the set on which the measure has a singularity 

is a well-defined, concave, and regular function. In particular, we show that 
this is the case for the accumulation of period doubling and critical mappings of 
the circle with golden rotation number. We also show in these particular cases 
that the function f is universal. 
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doubling; critical circle map; universality. 

1. INTRODUCTION 

In  recen t  w o r k  ~t'2~8'I2"~5 ~7~ a new m e t h o d  for the desc r ip t ion  of s ingu la r i t i e s  

of measu re s  has  been  discussed.  T h e  m a i n  idea  is to e s t ima te  the  H a u s d o r f f  

d i m e n s i o n  of the set where  the  m e a s u r e  has  a g iven  power  law s ingular i ty .  
F o r  s impl ic i ty  we shal l  w o r k  in  d i m e n s i o n  one,  a l t h o u g h  m a n y  resul ts  

ex tend  to h igher  d i m e n s i o n .  Let  /~ be a n o n a t o m i c  Borel  p r o b a b i l i t y  
m e a s u r e  o n  the  real line. W e  define two func t ions  c~ + a n d  c~ by  

a n d  

c~ + (x)  = l im sup  log # ( / ) / l o g  II[ 
I/I ~0  

xelnt{/} 

a - ( x )  = l im inf  log # ( / ) / l o g  III 
III ~ 0  

xE ln t{ l}  
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where 1I[ denotes the length of the interval I and Int{.} denotes the 
interior. In some sense these two functions describe the singularity of the 
measure # at x. If one considers instead of/~ the cumulative distribution 
function of the measure, then c~ + and c~ are related to the H61der 
exponents at x. 

The following question is now rather natural. For  a positive real num- 
ber ~, define the sets B + by 

B + = {x ] ~-+(x)=e} 

What can we say about these sets? Note first that in general they can be 
quite small when measured by/~. In the cases we shall discuss below, there 
is only one value of c~ such that #(B + ) # 0 (and both sets are in fact of full 
measure). Nevertheless, one can try to analyze these sets from a different 
point of view. In the very interesting seminal paper by Halsey et aL (15) it 
was proposed to look at the Hausdorff dimension of such sets obtained 
from experimental measurements as a function of c~. Somewhat surprisingly, 
it was indeed possible to extract such a function from the experiment. This 
function turned out to be smooth and in good agreement with the 
numerical computations for the invariant measure associated to critical 
mappings of the circle with golden rotation number. It is the purpose of 
this paper to prove rigorously the existence of such a smooth function f ( e )  
for some invariant measure # of expanding Markov maps (including the 
above situation): f (~)  is the Hausdorff dimension of the set B + and also 
B2 for this measure. Note that without some restrictions on the measure 
nothing interesting can be said. In fact, it is easy to construct measures for 
which the above function behaves wildly. 

Our approach is based on an idea introduced in Ref. 15, which 
roughly goes as follows. If A ~ is the dyadic partition of N by intervals of 
length 2 n, the partition function Z~u(fl) is defined for fl ~ ~ by 

z~(~): ~ mA?: Y, ~-~(~ (I) 

the sum being taken over all atoms A for which/~(A) r  The free energy 
of/~ for this uniform partition is defined (when it exists) by 

F(fl)= lim - n  -11og2 Z~(fl) 
n ~  -}-co 

The analogy with statistical mechanics is then used to relate the Legendre 
transform of F(infp[flt-F(fl)]) to the distribution of the numbers #(I) for 
I t  A ~ i.e., to f (c  0. 

We give rigorous proofs of the above connections when /~ is an 
invariant measure for an expanding Markov map on an interval or a circle. 
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We also prove that the invariant measures associated to the dynamical 
systems for period doubling and for critical circle mappings with golden 
rotation number satisfy our hypothesis. For  the latter case we have to con- 
struct explicitly this invariant measure (in the former case it is already 
known). We also prove for both cases the universality of the function f .  
This means for the period doubling that any function in the universality 
class of the quadratic (unimodal real analytic) fixed point will have the 
same function f .  A similar result holds for circle maps. The argument is 
based on the rapid convergence of the associated potentials. 

We observe here that while the results for the period doubling case 
and for the circle maps are very similar, the proof of the existence of the 
free energy is much more difficult for the first case. The problem comes 
from the fact that the invariant measure for period doubling is concen- 
trated on a Cantor set. This leads to difficulties with the free energy for 
negative values of fi due to the fact that E(A) in (1) may be atypically 
large. This will happen when A is almost contained in the complement of 
the support of/~. Our remedy for this comes from the observation that any 
such interval A must have a left or a right neighboring interval which has a 
normal weight. We can therefore modify the partitions A ~ by joining 
together such intervals and we redefine Zn(fi) in terms of the new partition. 
This in fact does not change the free energy for fl >~ 0. The circle map has 
no such problems: the support of the invariant measure is the whole circle. 

We note that this problem may also arise in the determination of f 
from experimental data. As mentioned earlier, f could be determined very 
readily for the "critical circle map" experiment. An attempt for a period 
doubling experiment encountered difficulties apparently similar to those 
mentioned above (A. Libchaber, private communication). It is possible 
that our theoretical remedy will also work for the experiment. 

It is tempting to interpret E(A) as the energy of the configuration A of 
some statistical mechanical system. This analogy can be carried out com- 
pletely for the case of the usual Cantor set if one uses the triadic partition. 
The associated system of statistical mechanics is the semi-infinite Bernoulli 
shift with three symbols and weights (1/2, 0, 1/2). We do not know how to 
carry out this analogy directly for the more general case we are looking at. 
Nevertheless, although we do not know how to define the Gibbs states of 
our system, we can do the thermodynamics. This is due in part to the 
relation with the (well-known) statistical mechanical approach to invariant 
measures of dynamical systems. ~2v) 

The proof of the existence of the free energy is carried out in Section 2. 
We also prove there that F is differentiable and independent of the precise 
partition by showing that it is the inverse of another, more intrinsic free 
energy GD previously used in the theory of dynamical systems. ~27) In fact, 
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an analysis o f f  based entirely on the function GD was developed indepen- 
dently by Rand ~28) for axiom A-like maps. Our result shows in particular 
that the uniform partition used in the analysis of the experiment give the 
same result as the dynamical partition. Unfortunately, this can be proven 
only after the existence of F has been established the hard way. 

In Section 3 we use the large-deviation theorem Is'26) to prove that f as 
introduced above is in fact the Legendre transform of F. The upper bound 
on the Hausdorff dimension follows directly from the large deviation 
theorem, while the lower bound is constructed using Frostman's 
Lemma. (9a8) The application to the two examples mentioned above is given 
in Section 4, where the construction of the invariant measure for critical 
circle maps with golden rotation number is carried out in detail. 

2. FREE E N E R G Y  FOR E X P A N D I N G  M A R K O V  M A P S  

2.1. Ex istence 

We first recall the definition of an expanding Markov map. Let K be a 
closed interval or the circle. Let K1,..., Kp be a finite covering of K by p 
closed intervals with disjoint interiors. Let D be a subset (nonempty) of 
{ 1,..., p }. Then g is a Markov map of K if g is defined and continuous on 
(_Jj~D Kj, and if rED and Int{K~c~g(K~)}#~, then Kqcg(K~). Let gn 
denote the nth iterate of g. We shall assume that there is a closed subset Ko 
of K such that for any large enough integer n and for any integer q in D, 
g"(Kq) = Ko. We shall also assume that g is regular and expanding in the 
following sense: 

(i) g is C 2 on each Kj for jED and there are two finite numbers 
p ~> • > 1 such that if g'(x) is defined, 

p/> I g'(x)l > z 

and (ii) 

sup sup l g~j(x)l <<. p 
jED xEKj 

It follows from the Markov property that the boundaries of the intervals 
Kj, jED, are preperiodic points. We can also assume that ifjCD, Kj is a 
connected component of the complement of Ur ~ o Kr. We now recall the 
well-known distortion lemma for expanding Markov maps (see, for 
example, Ref. 13). 
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Lemma 2.1. There is a finite constant ~ ~> 1 such that if t e N and if 
I and J are two subintervals of K, with the property that gS(I) w gS(j) ~ Kq 
Vs e N, 0 ~< s ~< t, then 

7-1 [II/IJ[ <<. l g'(I)l/I g ' (J) l  ~<7 III/IJI 

We shall assume that a g-invariant Borel measure # has been defined 
on K with the following properties 

(i) l t(Kr)=Oif rq~D. 
(ii) If I and J are two subsets of some interval K s, s e D, then 

I~( I)/p( J ) = I~( g( I) )/l~( g( ) )  ) 

The above assumptions together with the set of numbers (#(Ks))~D 
completely determine the Borel measure # (there is of course a finite 
number of consistency relations to be satisfied). Since we shall only be 
interested in the properties of the measure #, we can assume that 

D =  { r l # ( g r ) > 0  and g is defined on Kr} 

We can also assume that K o =  Ur~D K~. 
An example of a transformation satisfying these conditions in which 

the measure # is concentrated on the usual Cantor  set is obtained as 
follows: 

K--- [0, 1 ], p : 3, K 1 = [0, 13, K2 ~ [13 -233 

K 3 = [2, 13, D = { 1, 3 }, g,K~(x) = 3x 

glm(x) = 3(x - z),3 # (K 1 ) =/z(K3) = �89 #(K2) = 0 

The cases we are interested in and treat later in detail, i.e., period doubling 
and critical maps of the circle, do not satisfy the hypothesis on the 
derivative, because the maps have a critical point. We shall see, however, 
that the corresponding measures are also invariant and ergodic for other 
transformations that do satisfy the conditions, and as seen from the 
definitions, the free energies depend only on the invariant measure and not 
on the transformation. 

Let lo denote the smallest distance between the points in ~)reD Ogr. 
The following lemma describes the singularity o f / t  near a boundary point. 

I _emma  2.2. There are four finite positive numbers C, o-1 > a 2 > 0, 
O<eo<lop- i /2 ,  such that if reD,  and b is a boundary point of K~ and 
0 ~< e ~< Co, then 

C-~e '' <~t ([b-e ,  b + e ]  nKr)<~ Ce '~2 
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Proof. We denote by I,  the set Krm [ b - z , b + e ] .  Let q be the 
smallest integer such that Int{gq(I~)} contains a boundary point of some 
Ks for s e D. If eo is small enough, we can assume that gq(b) is a periodic 
point of g. If 0-%< j <  q, we have gJ(I~)~ Krj for some rj e D. Therefore 

I~(I,) = #(gq(I~)) H ~ , ,  
j = 0 #  gt rj)) 

Note that since # is g-invariant, and /Z(Kr,)>O, we have #(g(Kr,))>O. 
Moreover, there is a finite constant C~ > 0 such that for any r E D 

C1 ~ <~ Ig( gr)/It(g( gr) ) ~ C1 

The result follows at once from the estimate q = O ( 1 ) l o g e  1, which is a 
consequence of 

ezq <. l gq(L)[ <. ep q | 

We now choose once for all an integer n o and a positive number l such 
that 

and 

2 "~ 1o7-1p 1>4/,  l<eo<lop 1/2 

C-112a1< inf/~(Ks)/3 
sED 

where the above constant C is the same as in Lemma 2.2. We shall denote 
by S the set  ~)j~ {1,..., p} OKj. 

For  an interval J let t j  be the largest integer such that for 0 ~< t ~< t j ,  g '  
is differentiable on J. We shall say that J is a regular interval if 

[ g'a(J)[ > l  

We denote by A ~ the partition of K by closed intervals of length 2 n 
(we can assume that K has length 1). Strictly speaking, this is not a par- 
tition, because of the overlap of the boundaries. However, this will have no 
effect, since the measure # is nonatomic. The sequence 2 - "  has been chosen 
for simplicity; any exponentially decreasing sequence would give the same 
result. As already mentioned in the introduction, we have to use a partition 
different from A ~ because for negative temperature the contributions of the 
exceptionally small atoms may dominate in the partition function. Notice, 
however, that these atoms do not contribute at positive temperature, and it 
is easy to show that in this last regime the two partitions give rise to the 
same free energy. In general, for fi < 0 we have to introduce a new partition 
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A,,  which consists of atoms that are more regular than those of A ~ (in the 
above sense). An will be defined only for n large enough, i.e., for n ~> no. Let 
I be an a tom of A ~ that is not regular. I f / ~ ( I n  K o ) =  0, we do not modify / .  
Otherwise we can write I=I '  w I", where I '  and I"  are closed, In t{ I '}  
In t{I"}  = ~ ,  and the point { y } = I ' n I "  is a preimage of a preperiodic 
point of g, i.e., there is an integer t such that g'(y) ~ S (we assume that t is 
the smallest such integer). Assume now that / ~ ( I ' n K o ) r  (the same 
construction has to be applied to I"). F rom the definition of no we deduce 
that I '  c Kj for s o m e j e  D. Let J be the a tom of A ~ adjacent to I '  with y r 3; 
we have also JeKj. We now claim that J is regular. If not, there is a 
smallest integer to such that: 

(i) g t~  and I g'~ < / ;  

(ii) or g'~ 

In the first case, from the Distortion Lemma and 27/< lo we cannot have 
t = to. If t < to, we consider the family of intervals g'+~(I'u J). As long as 
I g~+~(I ' u J)t </o ,  we can apply g. Therefore, if ro is the largest integer 
such that [ g '+  ~~ u J)l < lo, we have t o > t + %, while from the Distortion 
Lemma, we have 

Fg'+~~ l lJllg'+~~ *p ~/2>l 

which is a contradiction. If t > t o, we can repeat the argument with I and J 
exchanged. The first case is therefore excluded. In the second case, if to 1> t, 
we argue as before. If to < t, g" cannot be defined on I '  for s > t o and we 
have again a contradiction. 

We now define a partition (A1),>n0 as follows. If I is a nonregular 
a tom of A ~ we write as above I =  I '  u I" and we take J u  I '  for an a tom of 
A~ where J is as above. In other words, the atoms of A~ are of the form 

I i  ~3 J ~  I 2 

where J is a regular a tom of A ~ and 11 and I2 are two closed subintervals 
(eventually empty)  of nonregular atoms of A ~ adjacent to J. Note that from 
the definition of l, the atoms of A~ have the following properties: 

(i) I fI~A~, then 2-"~<111 ~<3.2-" .  

(ii) If lsA~,  #(I)#O and forO<~q<tl, g q ( I ) n S = ~ .  

We shall now slightly modify A~ to arrive at An. We have to do this 
because although gt'(I) is not too small, it may still have a small measure. 
Again, if I t  A 1 and/~(I)  = 0, we do not change/ .  If/~(I) > 0, let as before q 
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be the smallest integer such that g q ( I n t { I } ) n S r  Let 11, 12 be two 
closed intervals such that I =  11 w 12, Int{I~ } c~ Int{I2} = ~5, and 

gq(Int { I1} ) c~ S =  gq(Int { I2 } ) c~ S =  

There are now different cases. Let 

0 = C llalp-~l{l + [-l~176 

Case 7. kt(gq(I)) > 0. In this case we do not modify L 

Case 2. kt(gq(I))<~O. In this case it follows from Lemma 2.2 that 
either ~t(I2)=0 or #(11)=0.  We shall consider the first situation; the 
second is treated similarly. Let J be the element of A~ that is adjacent to 11. 
Let ql be the smallest integer such that g q ' ( I n t { J } ) n S r  We claim 
that #(gqi( j ) )> 0. To prove this fact, assume first that q~ ~<q. From the 
Distortion Lemma, we have 

I gq'(I)] >/7 

Therefore 

l lgq,(j)[ ~7-~l 

q ~< ql + [ - - log(y- l / ) / log X] + 1 

If N(gql(j)) <~ O, we deduce from Lemma 2 that 

d(S, Ogql(j)) < lp {l + [ log(y-ll)/log Z]} 

From the expansiveness of g and the upper bound on q - q 1 ,  we get 
d(S, Ogq(J)) <~ L Using Lemma 2 and l <  lo/2, we get 

#(gq(I)) >~ C-~U~ > 0 

which is a contradiction. If q > ql, we can apply the same argument with I 
and J exchanged. 

We now modify the partition as follows. 12 becomes an atom of An (of 
measure 0). To the atom J we add I~, and eventually a similar piece on the 
other side. It is easy to show that this partition An has the following 
properties. 

Proposition 2.3. If I t  An, and #(I)  > 0, we have: 

(i) 2 n~ l l l~<5"2 -n .  

(ii) If q is the smallest integer such that gq( In t { I } )n  S r  ~ ,  then 
#(gq(I)) >~ O, where 0 is as above. 

(iii) A,+I  is a refinement of A,.  
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We are now ready to define the partition function of our system by 

z'(/3)=  (1)a 
l e  An 

u( l )>O 

Before proving the existence of the thermodynamic limit, we shall establish 
some rough estimates on Z'(fl). 

k e m m a  2.4. There is acons tan t  C o such that if p, n e N ,  i f J ~ A ,  
and I 6 A , + p  satisfy I c J  and # ( I ) > 0 ,  then 

#( I)/#( J) >~ Co b l + p/log2 

where b = infj ~ D #(Kj). 

Proof. We have 

#( I)/#( J) = #( gt~( I) )/#( gtJ( J) ) >~ #( g'S( I) ) 

From ]gtJ(J)l >~ l and the Distortion Lemma, we derive 

[g,J(i)[ ~>y-1 [i[ [gtj(j)[/[j[ ~7  ll2-P 

This implies t t -  lj ~< 1 + log 2PT/log Z- Therefore we get, using Proposition 
2.3, 

', #(Ksj_,)  
#(g"(I)) ~ 0 , #(Ks) 

where sj is the index in D such that gJ(g'~(I))EK,j for O<~j<~tz--t J -  1. 
The result follows now from the definition of b if we define Co by 

Co = Ob 1 + log y/log Z I 

If p and n are integers and C o is the above constant, Coro l l a ry  2.5. 
we have for fl > 0 

C0 b p /'o 2 T + P(3) 5 

and the reversed inequalities for fl < 0. 

Proof. The upper bound follows at once from Proposition 2.3, since 
each atom of A, contains at most 5 p atoms of An+ p. The lower bound is 
also obvious from Lemma 2.4 if we associate to each atom of A, a subatom 
of A,+p of nonzero measure. | 

We are now ready to prove the existence of the thermodynamic limit. 
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Theorem 2.6. For  any fl e 

F(fl) = lim - n  -~ log2 Zn(fl) 
n ~ o o  

exists and defines a convex function F of ft. 

Proof'. We shall prove that for n large enough, the sequence 
- l o g 2  Z"(fl) is subadditive. Namely, there is a number nl and a constant 
C2(fl) such that if n and m are larger than nl, we have 

Z n +m(fl) ~ C2(fl) Z~(fl) zm(fl) (2.1) 

The result then follows by standard arguments from the existence of a 
lower bound on log2 Z"(fl) (which follows at once from Corollary 2.5). 

We can write 

Z . + , . ( f l ) =  ~ #(j)e ~, [# ( i ) /~ ( j ) ]~  
J E A n  [E An+rn 

l = J  

If I and J are as in the above sum, we have 

#( I)/kt( J) = #( g'J( I) )/l~( g'J( J) ) 

From the Distortion Lemma we deduce 

7 l tI[ [gtJ(J)l/[J[ ~ [g'~(I)] ~<7 111 [gtJ(J)l/lJ[ 

which implies 

7-112-m~ Ig"(I)l  ~<y2 m 

We now define an integer ql by 

ql = 1 + [log2 72l -2]  

where [ ] denotes the integer part. From now on, we shall assume that n 
and m are bigger than nl = n 0 + 2 q l .  Assume first f l>0 .  For  JeAn ,  the 
family ~ of subsets 

{g 'J ( I ) l l eA , ,+ , , , , I cJ}  

is in some sense finer than the partition A,,_ ql, i.e., each element intersects 
at most two atoms of An_q,. Moreover,  each a tom of An_q~ contains at 
most 4 q' elements of the family ~ .  This implies 

#(i)a <~ 2e4q~zm ql(fl) 
I~ An+m 

I ~ J  
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and the subadditivity follows immediately from Corollary 2.5. To deal with 
the case fl < 0 we use a similar argument. Note, however, that we have to 
use estimates in the reversed direction. Each element of the family ~ j  
contains at most 4 q~ atoms of the partition An+q~. Moreover, each atom of 
A,+q~ intersects at most two elements of ~s. Assume that Y e ~ j  and 
ReA,+q~ are such that Y~R#;25 .  If # ( Y ) > 0 ,  it follows easily from the 
Distortion Lemma that I~(R)/#(Y)~< 0 -1. This implies #(Y)~< O-~t~(R) ~. 
The result follows now as in the c a s e / / >  0. | 

2.2. Regular i ty  

The above construction does not yield directly any information about 
the regularity of F. In particular, we do not know whether F has a 
singularity corresponding to a phase transition, e.g., a discontinuity of the 
first derivative. Such behavior is known to occur for some transformations 
with critical points, e.g., for the absolutely continuous invariant measure of 
the map x--* 1 - 2 x  2. We shall prove here that this does not in fact occur 
under our hypothesis. We do this by showing that our free energy is in fact 
the inverse of another free energy Go obtained from a partition for which 
/~(A ) is the same for all the atoms A. That free energy, called the dynamical 
free energy, has been investigated in Ref. 27 and is known in our case to be 
C 1" 

Let ~0 be the partition of K defined by the intervals K 1 ..... Kp used in 
the covering of K. We shall denote by ~n the partition 

o 

The dynamical free energy Go(x, y) is defined for x and y in ~ by 

Go(x ,y )= lira n - l l o g 2  ~ [AIY/~(A) x 
n ~  A ~ n  

# ( A ) > 0  

It was shown in Refs. 27 and 30 that Go exists on ~2, is C 2, and DzG o ~ 0 
on ~2. For  the following proposition we only need the existence of G o. 

Proposit ion 2.7. Vfi~ ~,  we have 

Go(/~, F(fi) ) = 0 

ProoL Let e be a positive real number small enough, and let f ie  ~. 
There is an integer N(e) such that if n is larger than N(e), we have 

2 n(F(,B) + ~) ~ E #(I) ~ <~ 2 --n(F(13) e) 

IE A n 
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Let m be an integer smaller than n (one should imagine n >> m >> 1). We 
have 

Ae.~~ l ~ A n  l e A n  A ~ ~  l c A ~ z  
I ~ A  # ( I ) & O  /a(lc~ A) > 0 

We now observe that  if A e 3~m, we have 

IA] >~ lop m 

We consider first the lower bound.  No te  that  if A e ~,,,  gm(A) = K~. for 
some s e D if #(K~) > 0. Therefore, if A e 3~m, 

#(I) ~ = #(A )B ~ #(gm(I))~/#(Ks)~ 
I E An  1E An 

/ , t(l~ A) > 0 kt(lc~ A) > 0  

F r o m  the distort ion Lemma,  if l e A n ,  # ( I c ~ A ) > 0 ,  and n > m  log 2 p -  
log 7-1/0, we have, with g"(A) = K s 

y- t / o  [II/IAI 4 ]  ; - 1 1 Z l  IKylAI  ~ I gm(I)l ~ ~' 1II IK~I/IA[ ~ ]I[/IA[ 

Let 

n~ = n + [ - - l o g  2 IAI ] § 10 E--log2 7 -  t/0] + 10 

Then, as in the p roof  of  Theorem 2.6, we have 

#(gm(I) )~  <<. C7(fl) Z"'(fl) <~ C7(fl) 2-"(F(~) ~) 
l '~i A n 

l z ( I ~ A ) > O  

where C7(fl) is a constant  which does not  depend on n, m, or A. We get 

2-n(F(fl)+e) ~ E #(A) e C8(fi) 2 -n(F(fl)-e) 2 (1~ ]At)F(fl) 
A ~ ~ 

for some new constant  Cs(fl). Therefore 

2-2n~C8(f l )  E #(A)PIAI F ~  
A ~ ~176 

Let now R be a fixed, positive, real number  larger than log2 p; we let m and 
n tend to + ~ in such a way that n/m ---> R. Taking the log of the above 
equality, we get 

G D(fl, F(fl) ) >1 --2Re 
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and since ~ is arbitrary, 

G D(fl, F(fi) ) >~ 0 

The estimate for the upper bound is done similarly. If A e ~m with 
#(A) > 0, we denote by U the set 

u = U i  
l e a n  
I c A  

Let n2 be the smallest integer such that 

U Xj=g" (U) 

(by this we mean the image by gn2 of the subset of U contained in the 
domain of g"2). If n is larger than m+n2+ [ - 1 0 g 7 - 1 / ]  and I c  U, then 
I~  An is in the domain of g% and we have 

gJ(Int { I } ) n  S = ~D" 

for 0 ~< j ~< n2. Using the Distortion Lemma, we can conclude as above that 
for some finite, positive constant C9(fi) we have 

t t( I)~ >>- ~(A)  ~ Cg(fl) Z"~(fl) 
IEAn 
l e a  

and the result follows as before. | 

C o r o l l a r y  2.8. I f D 2 G D r  F i s  C 1. 

The proof follows from the inverse function theorem. 

3. H A U S D O R F F  D I M E N S I O N S  OF THE S INGULARIT IES 

In this section, we shall analyze the Hausdorff dimension of the sets 
where the singularity of the measure # takes a given value. In other words, 
we shall give an expression for the Hausdorff dimension of the sets B +. As 
we shall see, these two sets have the same Hausdorff dimension. Note, 
however, that this does not imply that the sets are the same; they may, for 
example, have different Hausdorff measure. The large-deviation results that 
we are about to use are not precise enough for the analysis of such fine 
details. An analysis of the speed of convergence to the thermodynamic limit 
may provide more information on these singularity sets. The main result of 
this section can be formulated as follows. Let f denote the Legendre trans- 

822/47/5-6-2 
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form of the free energy F. Then, using the same assumptions and definitions 
as before, we have the following result. 

T h e o r e m  3.1. B + and B2 have the same Hausdorff  dimension, 
which is equal to f ( t ) .  

The proof will be given in two distinct steps. We shall first establish an 
upper bound for the Hausdorff  dimension. This is rather easy, using the 
result of large-deviation theory. We shall count the number of balls of a 
given radius that are needed to cover B +. From the previous definitions 
and the results of Section 2, the answer to this question is exactly provided 
by the large-deviation theory. 

In a second step, we shall prove a lower bound. This turns out to be 
more difficult. We shall in fact give lower bounds on the Hausdorff  dimen- 
sion of subsets of B +. We shall use a result due to Frostman,  which can be 
formulated as follows. Let Dr(P) denote the ball in N" with radius r, 
centered at P. 

Lemma 3.2 (Frostman).  Let L be a Borel subset of ~" and assume 
that there is a Borel probability measure v on ~ such that: 

(i) v ( L ) =  1. 

(ii) There are two positive, finite numbers C and c5 such that 

V(Dr(P)) <~ Cr a 

Then the 6 Hausdorff  measure of L is positive. 

We shall use a weaker version of the above theorem, which says that 
under the same hypothesis the Hausdorff  dimension of L is at least 6. The 
proof  of Frostman's  Lemma as stated above is an easy exercise. Deeper 
results can be found in Refs. 9 and 18. To prove a lower bound on the 
Hausdorff  dimension of Bt + we shall construct a measure as above. The 
interesting fact is that this measure does not have to be related to the 
dynamical system. It will be constructed by giving explicit weights to atoms 
of the partitions at different scales. These weights will again be chosen 
according to the statistics of the large deviations. 

We now start proving upper bounds on the Hausdorff  dimensions. For 
convenience, we shall split the proof  of Theorem 3.1 into several lemmas. If 
A is a subset of K, we shall denote by HD(A)  its Hausdorff  dimension and 
by HDM~(A) its 6 Hausdorff  measure (see Ref. 10). From our hypothesis 
on F it follows t h a t f i s  - o e  except on an interval ] t l ,  t2[, where it is a C 1 
concave function with a maximum at some point to which corresponds to 
f l = 0  for F. 
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kemma 3.3: 

(i) If t~<t<to,  then HD(Bj)<<.f(t). 

(ii) If t 2> t> t , ,  then HD(B+)~f( t ) .  

Proof. We shall start by proving (i). The result will follow from the 

equality 

H D M ~ ( B .  ) = 0 V~ > f( t)  

More precisely, we shall show that for any (small) positive number e and 
for any positive number 6 small enough, we have 

HDM~,a(B.)  ~< 

where HDM~,a(A ) is defined by 

HDM~.a(A) = inf ~ [diam(Bi)] ~ 
A ~ U i B i  i 

diam(Bi) ~ & 

Here the B i are balls and diam(Bi) denotes their diameter. The final result 
will follow from HDM~(A) = lima~ 0 HDMT,6(A). Since r is larger t h a n f ( t )  
and f is continuous, we can find a positive number e such that 

~> f ( t+2e)+e  

We now impose an upper bound on c5 and apply the large-deviation 
theorems as fo l lows.  (s'26) We first observe that the cardinality # (A.) of the 
partition A. defined in Section 2 is bounded by 

2"/5 ~< # (A.) ~< 2" 

We equip the discrete set A. with a probability measure that is simply the 
counting measure and define on A. a random variable X. by 

X.(1) = 0 if #(I) = 0 

Xn(1) = log kt(I) otherwise 

The first choice is of course arbitrary; a more natural value for X.(I) would 
be - Go, but this is not very convenient from the point of view of measure 
theory. 

It follows at once from the definitions that Vfl 1> 0, we have 

E(exp flXn) = Z'(fi)/ # (An) 
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We can now apply  the large-deviat ion theorem to conclude that  for a given 
positive e, there is an integer no(e) such that  if n>no(e), the number  of 
dyadic  intervals I of length 2 - ~  satisfying 

is bounded  by 

#(I) > ill'+2~ 

2 n [ f ( t  + 2e)  + e 3 

If fl < 0, we proceed similarly, with i:,, defined by 

= f + o o  if # ( I ) = 0  
X~(I) 

log # ( I )  otherwise 

Let m be an integer larger than  n0(e) + 4 and take 6 = 2 m. If a point  x 
belongs to BT,  there is a sequence of open intervals (Jr)r~ ~ such that  

{ x } = 0 J ,  I J ~ [ ~ 0 ,  log#(Jr)/logLJrl~t as r ~  +oo 
r 

Note,  however,  that  the intervals Jr may  not  belong to any of our  par-  
titions A, .  Fo r  r large enough,  we have 

#(Jr) >/[Jrt t+~ and a ~> 2 [Jr] 

We now observe that  there are at mos t  six intervals I1,..., [6 in some A,, 
such that  Jr  c I~ w --. w 16 and 

6 inf [I:1 ~ [Jrl ~ sup 11,1/6 
i i 

Therefore  
sup #(Ii)>~#(Jr)/6>~tJr]'+~/6>>-6 2 r ~ sup I/i[ '+~ 

i =  1,. . . ,6 i =  1,...,6 

This implies that  at least one of the intervals I satisfies 

#(I)>~ III '+2~ 

if m is large enough. We therefore get 
- c o o  

HDM~.e(BT)~< ~ 2"E7('+2~)+~16~2 -"~ 
n = m  

since each Jr  is covered by a ball of radius 6 �9 2 n centered in the middle of 
L I t  follows that  for m large enough 

HDM,.2-m(B 2 ) ~< 
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The proof  of (ii) is rather similar. We again use the large-deviation 
theorem (with /~ < 0 )  to estimate the number  of intervals I of length 2 n 
satisfying 

For  x ~ B ,  +, we introduce again a sequence (Jr)r~ ~ of intervals, which 
satisfy 

~(Jr)  ~ IJrlt+e 

for r large enough. There is an interval I in some A~ such that l~J~ and 
III/> PJ~I/6. Therefore 

~t(l) <~#(Jr) ~ [Jr]t+~ <~ 6 t +~ ]II t+~ 

and Jr is contained in a ball of radius 6 III centered in the middle o f / .  The 
upper bound follows as before. | 

Remark. We have in fact shown the following more general result 
(although we shall not use it). 

L e m m a  3.4. Let B, be the set of points x such that t is an 
accumulation point of 

log #(J) / log IJI when IJI --* 0 

Then if t r to, HD(/~,) ~< f( t ) .  

The next lemma provides a lower bound on the dimension of B + and 
B,-. 

Lemma 3.5. Let t r to be a given positive number. There is a set V t 
such that 

(i) HD(V,)>~ f(t) 
(ii) Vt~B +riB 7. 

ProoL We shall consider first the case t I < t < t o and we fix t in that 
range. To simplify notation we shall write V for Vt(e) when there is no 
ambiguity. 

We shall construct recursively a sequence (Fj.)j~ ~ of families of inter- 
vals. This construction will depend on two sequences of positive real num- 
bers (rj)j~ ~ and (fij)j~ ~ satisfying, for j - ~  ~ ,  

rj--+ ~ ,  r~+= r t ~ 0 ,  ~j --* 0 
1 1 
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. 

2. 

3. 
2 - ' /% 

We shall also require that r j+~-r j  > 3 log l l/log ~, and that the sequence 
6j is nonincreasing. These two sequences will be chosen suitably later, and 
we define now the families Fj for j ~ t~. The family Fo is the family with only 
one element K. Assume the families F1, F2,..., Fp_ 1 have already been 
defined, we shall now construct the family Fp. Let J be an element of Fp_ 
and let q be the smallest integer such that Igq(J)] >~ l (see Section 2 for the 
definition of l and of a regular interval). It will follow from the recursive 
assumptions that J is regular. We shall collect in Fp all the subintervals I of 
J with the following properties: 

gq(I) belongs to Arp. 

[gq(i)lt+6p <~ #(gq(I)) <~ [gq(I)l t 6p. 

The distance from gq(I) to the boundary of gq(J) is larger than 

It should become clear later that from our choice of the sequences (rp)p~ 
and (6j)j~ ~, Fp is not empty. 

The set V is defined by 

p = 0  1 

We shall now compute the values of the function T + and T on V. Let x 
be a point in V and let H be an open interval containing x. Let p be the 
largest integer such that H c L  where I~Fp.  Let I' be the atom of Fp+l 
that contains x. We have, using the Distortion Lemma, 

1 >~d(x, OI')/lI'l >17 12 ~/rp~2 

This implies 

[HI > II'l v -~2-'/~p+~- 

since otherwise H would be contained in F (contradicting the maximality 
of p). We have from fact 2 in the definition of F;  

#(H) ~ (#(I)/#(I')) x #(I') 

<<, #( gq(I) )/#( gU( I') ) • #(I') 

<~]gq(I')] t ap#(i,) 

~< O(1) 2rp+l(t + 6D#(I ') 

We shall now construct a lower bound on #(H). The difficulty here is 
that x may be very near to the boundary of H. We have to deal with this 
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situation because we have not imposed any restriction on the intervals that 
appear in the definitions of the functions T -+. Let I"  be the a tom of Fp + 2 
containing x. There are two cases. 

d(x, 8H)/[H[ > 2 rp+2/2. In this case, I"  c H and we have of Case I. 
course 

#(H)  > #(I")  

Case 2. d(x, OH)/[HI < 2  -rp+J2. Let ql be the largest integer such 
that for 0 < q < ql,  gq is differentiable on H, and gq~(H) ~ S # ~ .  Let q' be 
the corresponding integer for I ' .  Note that 

]gq'(l')[ > l  and d(gq'(x), ~gq' ( I ' ) )> 2 -~/rp+2 

Let y be the unique point in H such that gq~(y) E S, and z the unique point 
in I '  such that gq'(z)E S. There are now four cases. 

Case 2.1. ql = q' and y #z .  Let U denote the closed interval with 
boundaries y and z. Since x ~  V and x ~ I n t { U } ,  we must have # ( U ) > 0 .  
Let U1 = U c~ H and U2 = U c~ I ' ;  we have of course #(H)  > #(U1 ), and also 

, # ( g ~ ' ( u ~ ) ) # ( u : )  

#(U,) = ~ 2 T )  ~-~~ #(i ' )  

Since d(gq'(x), 8gq' ( I ' ) )> 2 -'r we get, using Lemma 2.2, 

#( U2)/#(I ' )  > #( gq'( U2) )/#( gq' ( I ' )  ) 

> C  l l g v ' ( U 2 ) l ~ > C  12-~"/r '+2 

Similarly, from [g~'(U1)192 ,/r~+~ we get 

#(gq ' (g l )  ) > C -1 2--~rlx/rp+2 

Combining these estimates, we have 

#(H)  > C -2 2 2at'r 

Case 2.2. q~ = q', y = z. We denote by U the segment with boundary 
points y and x. We now observe that if I"  denotes the interval of F~+2 
containing x, and if q2 is the smallest integer such that Igq2(I')l > l, we have 
q2 -< -< q,' and q' - -  q2 ~< log l -  ~/1og Z. If rp + 2 is large enough so that 

3p--logl/logz 2-~p+2 < l 

we have 

!gq'(I")l ~<I 
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On the other hand, if q3 is the smallest integer such that 

[gq3(I")[ >/l 

we have 

From 

q3 <~ ql + rp+ 2/log2 Z <~ q' + rp+ 2/log2 Z 

d(gq3(x), Ogq3(I")) > 2-'/rp+3 

and gq'(I") c~ S = ~ ,  we get 

[ g q ' ( x ) -  gq'(y)[ >/~)-lp-rp+2/log2z 2 ,/r~+3 

We can proceed as in the previous case, i.e., 

#( H) >/ kt( U) = #( gq' ( u) )/~( gq' ( [') ) x #(I') 

>~ C-ly-~lp--~rlrp+2/log2z 2 ~1,/r~+3/~(I,) 

Note that # ( g q ' ( u ) ) &  0 since # ( I ' ) r  0, and there is a number  p '  such that 
i f l l e A r o ,  and x e I  1, then Jill < [U[/2, and /~( I1 )>0 .  

Case 2.2. q~ < q'. Let U be the interval with boundary points y and 
z, and U~ = UtaH. Since ql < q ' ,  we have y(sI'.  There are now two cases. 

Case 2.3.1. z (s H. We set U2=I'c~ U, and we use the same 
argument as in Case 2.2 

/ ~ ( U 1 )  = [# (gq t (u1 ) ) / # (gq l (u2 ) ) ]  • [#(gq'(Uz)) / l~(gq'(I ' ) )]  t~(I') 

>~ #(I') C -  2 2 - ~'/rP+2 7 ~ ~rp+2 log X 2--~ 

Case 2.3.2. z EH. We denote by U2 the interval with boundary 
points z and x. We have 

~( g l  ) = [#( gql( U1) )/tl( gq'( g2) ) ] • [#( gq' ( g2)  )/#( gq' ( I ' )  ) ] x #( I ' )  

As in Case 2.2, we have 

[gq'(U1)[ >/ y-lp-rp+2/log2x 2 x/rp+3 

i gq' ( u2)l >/ ]) -- l p --rp+ 2/log2 z 2 ,/r~+3 

Hence, 

]1( U 1 ) ~ C-27  - 2al D -- 2alrp+2/l~ X 2 -- 2,r l . / rp+ 3 # ( 1 , )  
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Case 2.4. q~ > q'. Let U be as above, and let U 2 = UU) I'. We now 
have z ~ H. There are again two cases. 

Case 2.4.1. yr  We set Ut =Hc~  U, and we have 

#(g t )  = [l~(gq~(u~))/#(gq~(u2))] x [l~(gq'(u2))/l~(gq'(I'))] #(I') 
C -2  2-  ~1 ~/rp+3 "/--flip ~ log Z 2-  fllx/rP +2//(1 ' ) 

Case 2.4.2. ye I ' .  We denote by U1 the interval with boundary 
points y and x, and we get 

/~/(Ut) > C -2  ~ 2aljo--2alrp+21~ 2 2a,x/rp+,#(i,) 

Combining all the cases, we have shown the following inequalities: 

O(1) 2r'*'(~ + a~/#(I ') >~ #(H) >~ C2 2-2fllrp+21~ 2-2~tx/rp+3~(I ') 

We shall now estimate #(I) [and #(I ') similarly]. Let J be the element 
of Fp t containing L Let u be the smallest integer such that ]g~(J)] ) / .  To 
estimate/,(g"(J)),  we let st be the smallest integer such that 

g " + S * ( J ) m S r  

We have of course s~ ~< log l - l / log Z. We first observe that 

d(g~(x), Og~(J)) >~ 2 "/~ 

Therefore 
d(g~'+Sl(x), Og"+~J(J))>/ Zs~ 2 "/~p 

We can write gU+S'(J)=U, wU2, I n t { U t } c ~ I n t { U 2 } = ~ ,  Int{Uj}c~ 
S = ~ ,  for i = 1 ,  2, and x e U t .  As before, we must have p ( U t ) > 0  , and 
Lemma 2.2 implies 

We conclude that 

where 

#(U1) >~ C 1),ols~ 2-fll,/rp 

Therefore 

#(gU(j)) >~ C31 2_~l,/rp 

C31=  [ inf  /z(Ki)] l~ I/l~ C 1 
#(Ki) ~ 0 

i~D 

C 312 -Gt'/rPcz(gU([)) ~ ~ ( I ) / # ( J )  ~ C32Cq'/rp~(gU(I)) 
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Note that the lower bound is rather poor. We have used it for the 
symmetry of the formula. From condition 2 in the definition of Fp, we get 

C 3 '2  "~'-/~ Ig~(I)l'+a~ ~< #(I) /#(J)  ~ C32`~'/~p Ig~(I)] ' a~ 

If we define Ca by 
C 4 = l-(t+fio) ]~(t+6o)c3 

we get from the Distortion Lemma 

2 '~1"/rpc41(III6p+t/IJI6P-'+t ) [jla~ t a~ 

Again from the Distortion Lemma and from the definition of Fp, we have 

7 ~P 12--rP/3<~ ]II/]J[ <~37 l-1 2--rP 

Therefore, 

where 

C~ P 2 zg,~ <~ lIE <~ C( 2 ~ ~J 

C s = 3 7 p l - ' (  inf [UI) 1 
U~ Fo 

Combining recursively the above inequalities, we get, with C8 = C4 Cs, 

C~-1-6oC8P 2 ~ l I E P ~ / r J 2 - - z P - l r j a j 2  apIE~' l rj  [i],+ap 

P r p - I  <~iz(I)<~C15+ao CP2",z0,/ ,2E0 r/aj+a~0 ~ ~r/] l l , -~ 

We now use the fact that there is a constant a > 5 such that 

p 
E r; >. ap6/S 
0 

z' 
r e rj <~ a/5, 

and we deduce for p ~> 1 with 

that 

r ~1/2/P~I 
/ ~ 

(~Op=aOpt--a rpq- Z rj~jq- 2 x/rJ r~ 
0 0 

[II '+~~ ~kt ( I )  ~ [II' ~op 



Dimension Spectrum of Dynamical Systems 631 

Using the similar estimate for I ' ,  and the various upper and lower bounds, 
we get 

C 2 2-~ ,+~~176 alx/rp+3 II'l '+~'~=~ ~<#(H)~< O(1) 2 r'+~'('+#~ II't ~ ~,+l 

i.e., 
C2 2 crlrp.21og2p 2--alx/rp+3 y-(t+aap+l)2 <,+oa,+,>~+, iHl,+~o,+, 

/~(H) ~ O(1) W' ~'~+~ 2(' ,,e,+~./~,.2 2,,+,(, +eel iHi,-o,,+~ 

This implies 
IHI t + 2o)P+I ~ #(H)  ~< IHI t-- 2~~ 

Therefore, since p --* + vo when PHI --+ 0, implying co s ~ 0, we get 

r + ( x )  = T ( x )  = t 

We shall now obtain a lower bound on the Hausdorff  dimension of V. 
Each family Fp induces a finite partition of the set V. These partitions 
induce on V a a-algebra ~ ,  and it is easy to verify that ~ is the Borel 
or-algebra. ~ We shall now construct a Borel measure v on V by specifying 
the value of v on each a tom of each family Fp. This is done recursively as 
follows. We first set v(K) = 1. Assuming v has already been defined for the 
elements of Fo,.., Fp_ l, we define v on Fp as follows. If I belongs to Fp, 
there is a unique interval J in Fp_ ~ containing L We set 

, ( I )  = ~ ( s ) / #  { H ~ F~I H = J}  

In other words, v(-l J)  when restricted to Fp is the counting measure. It is 
easy to verify that v extends to a unique Borel probability measure on K 
with v(K) = 1. We shall now estimate v(I) for I in Fp. As before, there is a 
unique element J in Fp_l containing I, and we denote by u the smallest 
integer such that 

IgU(J)p > t  

In order to estimate v(I)/v(J), we have to count the number of intervals Y 
in Ar~ such that: 

1. Y c  g~'(J) 

2. [ Y I * + # ~ # C Y ) ~  IYI * - #  

3. d(Y, ag"CJ))>~2 ,/~ 

Since we only need an upper bound on v(I), we shall only produce a lower 
bound on the number  of atoms of Ar~ satisfying 1 3. This estimate will 
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follow again from the large-deviation theorem. However, we shall apply 
this theorem to g"(J) instead of K, and this will require some more 
estimates. We shall in fact show that the free energy is the same. Let U be 
the union of the intervals in Ar, satisfying 1 and 3. We have [U[ ~> l/2. Let q 
be the smallest integer such that 

g~(U) c~ S r Y5 

We observe that q ~< 2 log l -  ~/log Z. We can write gq(U) = U 1 Uh U 2 ,  where 

(Int{ g 1 }/..) Int{ U2 }) c~ S = 

and #(U~)>~ 0/2 (see Lemma 2.4). By Lemma 2.2, this implies 

lUll ~>l ~ 

with ~ > 0  independent of l for l small enough. Let q~ be the smallest 
integer such that g q l ( u 1 ) ( 3 S  consists of at least two points. Since ql 
6~log/-~/ log Z, we deduce that ql < r j  Vj> 1. Therefore, 

gql( Ul) = Km 

for some index m belonging to D. We now reduce U 1 such that 
gql(Ul) = K  m. Note that # ( 0 ~ ) > 0  from Lemma 2.2. 

Let q2 denote the smallest integer such that infm~o Igq2(g,~)] = 1. We 
now consider the following situation. Let W be an interval such that 

W] > 1~6 and for some integer q3 < q2 + 12~ log l 1/log ~(, we have 

Let 

gq3( W )  = K 

YEAn 
Y= W,u(Y)#O 

where n is larger than n 3 = 1 + [-~ log2 l-lpq3]. Let 

n4 = 1 + [-~ log pl 2y/log )~] 

For  Y~An,  Y c  W, we can cover Y by intervals I~,..., Is belonging to 
An+n4, 0 < s < 3" 2 nn. Assume # ( Y ) r  then we have two cases: 

Case 1. There is an interval Ij such that # ( I j ) r  and Int{Ij} c Y. 
In this case we have 

/~(Ij)~<#(Y)42 "4 sup /~(L) 
LEAn+n 4 
Lc~ Y ~  ~ 
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Case 2. If Ijff An+n4 and #(Ifl r 0, then I x ~ Y. As was already 
explained in the proof  of Theorem 2.6, this situation cannot occur, because 
of Lemma 2.2. This shows that for some constant Cs(fl) we have 

z~)(/;) ~< cd~) z(')(/~) 

for any f le  R. 
We now prove the lower bound in a similar way. We first observe that 

Igq3(Y)l<l V Y e A , ,  Y e W  

if n >/7 3 . Next, we have, if #(Y) =A 0, 

b~3#( gq3( Y) ) ~ l~( Y) <~ b -q3#( gq3( y) ) 

where the constant b was defined in Lemma 2.4. We now cover gq3(y) by 
atoms of A,,+, 4. We need at most 

3 �9 2 n4 2 [log yJ + 1 + q3[_log p]  

such atoms (from the Distortion Lemma),  and we conclude as before that 
if/~(Y) r 0, there is an interval !J e A,  + ,,4 with/~(Ifl :A 0 and I x c gq3(y). We 
have 

[ 2 ( I j )  ~ # ( g q 3 ( y ) )  ~< 3 . 2  n4 2'  + [ l~ + q3[l~ P] sup -#(L) 
L ~ An+n4 

L r~ gq3( Y) ~ ~ 

We now have 

z(~)(/~) >/ ~ b~'/~/~(g~(Y)) ~ 
Y ~ A n  
Y = W  

,a( Y) ~ O 

Since W is a union of atoms of A,, and gql(W) = K, we obtain the required 
lower bound: 

z~)(/;) > c6(fl) z(')(B) 

Therefore, 

- n  l logZ~)(f i )  ,~oo-+ F(fl) 

Note also that the above convergence is uniform in W (since C5 and C 6 

can be chosen independent of W). 
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From the large-deviation theorem we conclude that for any given 
positive number e there is a positive integer n(e) such that if n > n(e), we 
have for t > t o 

# {YeA~It~(Y)>O, Y~ W, and #(Y)~< I YI '+~ } ~<2 ~Ef<'+~)+"~ 

and 

#{YeA~Iv(Y)>O, YcW,  andg(Y)~<IYI' ~}/>2 ~E/(' ~ .~l 

where rl=[f'(t)[/2. We may, and will, assume that n(a)--,ov if e---,O. 
Therefore 

# {Y~A~I#(Y)>O, Yc  W, and IYI' ~ ( Y ) ~  IYI '-+-~} 
~> 2,Er(o- 3r/~] qej2 

provided ~ is smaller than some fixed positive number ~1 and ne >~e~. A 
similar estimate holds for t < to. We now choose the sequences (rj)/+ ~ and 
(6/)/~ v. Let/16 be defined by 

n 6 = sup(e~ ~, 6ff log pl ~/log Z) 

We s e t  rj~--jn6, and we define 6/ recursively as follows. We set 6~=e~. 
Assume ~ ,  62,.., ~/_, have already been defined. Using the integer-valued 
function n(-), provided by the large-deviation theorem, we have an integer 
n(6/ 1). If n(6g 1)~>rj, we set 6 /=6 /_1 .  If n(6/_ ~)<r/ ,  we define a / t o  be 
the smallest number e such that n(e)<~rj and erj>~e~ (we may still have 
e = fij_~). We have ~ / ~  0 if j ~ Go. It is now easy to verify that all our 
assumptions on the two sequences (~ / ) /~  and (r/)/~v are satisfied. 
Combining the above results, we get for I~ Fp 

v(I) <~ (r/el/2) p 2 -f( ') x;g r,+3, ~-0p air, 

Let now B~ be an interval of length ~ and such that v(Br In 
particular, we have B e ~ V r  ~ .  As explained in the first part, if p is the 
largest integer such that Br c I for some I in Fp, we have 

III >/Bel  > 7 -~ 2 x/rp+2 II'l 

for s o m e  I '  e f p +  1 with v(I' ~Br 
We have the following estimates (see above) 

lll~Cs2-~gr,, [I'L>C~12-~g r, 
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Therefore 

v(Br <~ IBr f(')+~162 drp+2>/z~grjl+~ 

~< C7 Ig+l s") 

where C7 is a finite constant which is uniform in p and ~. The result follows 
from Frostman's lemma. (9'~8) | 

The theorem is now an obvious consequence of the above results. 

Remark. It is easy to derive from the above analysis tha t f ( t0 )  is the 
Hausdorff dimension of the support of the measure #, and that tl defined 
byf ( t~ )  = t t is the Hausdorff dimension of that measure. 

4. A P P L I C A T I O N S  

4.1. Period Doubl ing 

In this section, we shall give an application of the above theory to the 
accumulation point of period doubling. A real analytic mapping ~b of the 
interval [ - 1 ,  1], has been constructed in Refs. 19, 4, and 8. This map 
satisfies 

(~((J(;+x)) = - 2 r  ~(0) = 1, r  = 4 ( - x ) ,  ~ ( 1 ) =  -;~ 

The dynamical system associated to & has periodic orbits of periods 2 q for 
any integer q, and an invariant Cantor set s Moreover, there is on E2 a 
unique invariant measure /~ which describes the asymptotic behavior of 
almost any trajectory. (4'24) It was observed in Ref. 23 that if one defines K 
and g by 

K =  K~ w K2 w/s K, = I- - 2 ,  22], /s = [2 2, ~(2)] 

K3 = [~b(2), 1], glxl(X)= --x/k, glK3(X) = --~b(x)/2 

then ~b and g have the same invariant set s and the same invariant measure 
#. Moreover, the hypotheses of Section 2 are satisfied [-in particular, 
#(X,) =/~(K3) = 1/2]. 

More generally, for unimodal maps of the interval, a renormalization 
transformation ~ is defined by (see Ref. 3 for more details) 

~ ( ~ ) ( x )  = 0(1)  ~ ~(~(4 , (1)x) )  

and ~b is a fixed point of ~.  If r belongs to the stable manifold of ~b, then 
~q~b converges to ~b exponentially fast in C .  It is easy to generalize the 
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above analysis to this new 
maps gq by 

where 

situation. One defines for q e  N se t s  Kq and 

Kq = Kq,1 w Kq, 2 u Kq,3 

Kq, 1 = [~q(~/)( l  ), (~q(~h))3(1)] 

Kq,2 = [(Nq(0))3(1) ,  (Nq(o))z(1)J  

Kq, 3 = [-(~q(0))2(1), 13 

gqlKq, l(x) =x/~q(O)(1), gq]K~,3(x)=~q(@)(x)/~q(@)(1) 

Theorem 2.6 can be extended to this situation, and one can show that 
the free energy F is the same for all the maps ~ on the stable manifold of ~b. 
It is easy to see that if A e~m (the dynamical partition introduced in 
Section 2.2), then/~(A) = 2-m. Therefore 

E 
A ~ m  

~(A)>0 

]A]Y#(A)X=2 ..... Z ; ( y )  

where 

z ~ ( f l ) =  Z IAI ~ 
A e~m 

MA)>O 

In Ref. 30 it was shown that a C 2 function FD(fl) is defined by 

Fz)(fl) = lira m -1 log2 Z';(fl) 
r n ~  +oo 

Therefore, as in Section 2.2, we get GD(x, y )=FD(y ) - - x .  From this 
equality we conclude that 

FD(F(fl) ) = fl 

i.e., F is the inverse function of FD, and therefore differentiable. 
The above equation can be easily generalized to the case of a sequence 

of maps converging exponentially fast to the map g. Since we know from 
Ref. 30 that the function FD is universal, we obtain another proof  that F is 
universal and therefore also its Legendre transform f .  In other words, all 
the maps on the stable manifold of the fixed point ~b have the same dimen- 
sion spectrum. 
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4.2. Critical Maps of the Circle 

We shall now give an application to the case of critical maps of the 
circle with golden rotation number. The precise hypotheses are as 
follows. (26) We shall denote by M the set of pairs of maps (~, t/) satisfying: 

(a) The numbers 3(0) and q(0) satisfy 0 < ~(0) = q(0) + 1 < 1. 

(b) ~ is an increasing map from [q(0), 0] to [r/(0), ~(0)]. Similarly, t/ 
is an increasing map from [0, ~(0)] to D/(0), ~(0)]. 

(c) ~ is analytic in a complex neighborhood of [0, ~(0)]. t/ is 
analytic in a complex neighborhood of [0, ~(0)]. Both maps ~(z) 
and ~7(z) are analytic functions of z 3. They have a critical point at 
z = 0, and we shall assume that their third derivative in 0 is non- 
z e r o .  

(d) ~ o r/= r/o ~ whenever both sides of this equality are defined. 

(e) ~ and ~/ have only one critical point (namely 0) in the complex 
neighborhoods introduced in condition (c). 

(f) ~(r/(0))>0; see condition (g) below. 

used to Under the above hypotheses, the couple (~,t/) can be 
construct a diffeomorphism ~b of the circle by setting 

~b I [~01,ol = ~ and ~b I [o,~0)l = 

We shall also impose on ~b the following condition: 

(g) The rotation number of the diffeomorphism ~b constructed with 
and t/is the golden number o. 

We refer the reader to Refs. 25 and 15 for a justification of these 
hypotheses. 

A particularly interesting case is obtained as follows. Let h be a 
homeomorphism of the circle with rotation number a. We can lift this 
homeomorphism to a map of the real line also denoted by h. We shall 
assume that the circle has length one, and we choose the lifting that 
satisfies 0 < h(0) < 1. Assume h is a real analytic function of z 3. Assume also 
that h has only one critical point in [ - 1 / 2 ,  1/2]. Then it is easy to verify 
that the couple (~, r/) defined by 

# ( x )  = h ( x )  and r/(x) = h ( x )  - 1 

belongs to M. 
The renormalization transformation is a map ~' from M into itself 

given by 

t n ) \~- ,~o. (~. ) )  

822/47/5-6-3 
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where ~=~](0) - -~(F] (0) ) .  (7'11'22'25'29) Note that from the above hypothesis 
we have - 1  < :~<0.  We shall use the following theorem from renor- 
malization theory. 

T h e o r e m  4.1. If (~, r/) belongs to M, then ~"(~, q) converges 
exponentially fast in C = to an element (~, ,  q , )  of M which is a fixed point 
of ~.  

For a computer-assisted proof of this theorem see Refs. 29 and 22. For a 
direct proof see Ref. 7. The above result is formulated sometimes using 
maps of the circle instead of pairs of maps as above. For  our purposes the 
above formulation is more convenient. If (~,~7) belongs to M, we shall 
denote by (~r, G) the couple ~r(~, ~/). As noted before, an element (~, q) of 
M defines a homeomorphism of the circle. This homeomorphism is C o 
conjugated to the rotation by the angle ~, and is therefore uniquely 
ergodic. (31) We shall now give a construction of this unique ergodic 
invariant measure. To do so, we first construct recursively a family ~p,  r, 
p e  N, of finite partitions of the intervals J~= [G(0), #,r(0)]. For  r~ N, we 
set 

~ = { J r } ,  ~ ~- { [~]r(0), ~r(~r(0))l, l~]r(~r(0)), ~r(0) 1 } 

Assume now that the partitions ~ have been already constructed for r E N, 
we first note the following important relations: 

L e m m a  4.2.  

(i) 
(ii) 

(iii) 

(iv) 

Let :~ = t/r(0 ) -- ~.~(r/r(0)). Then: 

~r(~(0))  = ~ +  1(0). 

~r('Tr(L(O))) = ~,'~r + 1(~r+ i(0))- 

~,. ' [ ,v(o) ,  ~'r(L,(O))] = L + , .  

l']r(lO~r~r+ 1(0), ~r (0) ] )  = O~r[~r+ 1(0), ~r+ l(~r+ 1(0))[" 

The proof is immediate from the definition of N. 
We now define ~p  as follows: 

~7~ I E.r(o),.~(~r(o))l = ~ r ~ ; L  11 
1 r 

~rp I ]rJr(~r(O) ),r ] = ~] ~ ( ~ p leAr[Fir + l(O),~r, l(rlr+ 1(0))[) 

Note that the above definition is consistent, since it is easy to show recur- 
sively that r/r(r is a boundary point for ~p i fp  ~> 1. We now have the 
following result: let ~ ,  denote the scaling factor for the fixed point, i.e., 
a ,  = t / , ( O ) - ~ , ( r / , ( O ) )  (this number has a modulus smaller than 1); then 
we have the following result. 



Dimension Spectrum of Dynamical Systems 639 

kemma 4.3. For any fixed couple ( { , q ) e M ,  there is a positive 
constant C1 such that 

sup sup III ~< C1 I~ , l  ~ 
r l ~ p  

Proof. We first observe that if r is large enough, 

This is true for the fixed point (27'=) and follows from Theorem 4.1 in the 
general case for r large enough. Therefore, the largest atom of Np is 
contained in the interval [q~(0), rb(#~(0))]. The length of this largest atom 
is therefore [c~[ times the length of the largest atom of ~ ;+~ .  Using 
iteratively this argument, we conclude that for r large enough, the largest 
atom of ~;, has a length bounded by 

p--I  

0(1) 1-1 leer--Z[ 
j =  0 

Therefore, for large r, the result follows from the exponential convergence 
in Theorem 4.1. If r is not large enough, the first few contributions are 
absorbed in the constant C~ and then we can apply the above 
argument. | 

For a fixed r, it is easy to verify recursively that the sequence of par- 
titions (~p)p~ ~ is increasing. This sequence of increasing partitions defines 
a a-algebra ~.  It follows easily from Lemma 4.3 (see Ref: 14) that ~ is the 
Borel a-algebra. 

For a fixed couple (~, r/)~M, we shall now define recursively a 
sequehce of measures #~. For every r we first set 

# r ( [ ~ r ( O ) ,  ~ r ( ~ r ( O ) ) ] )  = a  

#r(]~r(~r(O)), ~ r ( O ) l )  = a 2 

(4.1) 

(4.2) 

We also impose 

#r(/) = a#r+ 1(c~2lI) if I~  N~ I [~r(0).,r(~r(O))] (4.3) 

#r(I) ~ -  #r(tlr(I)) if Ie.~pXf.,(Zr(o)~,~r(o)] (4.4) 

T h e o r e m  4.4. The constraints (4.1)(4.4) define for each r a 
unique measure #r invariant under the homeomorphism associated to 
(L,  ~r). 
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ProoL We note first that uniqueness follows from the unique 
ergodicity. Therefore we only have to show that /am is a well-defined 
invariant measure. The above constraints can be used recursively to define 
weights for all the sets in L)~ Np- If we can show that this family of weights 
is consistent, it will follow that #r is a well-defined measure. (14) To show the 
coherence of the above definitions, it is enough to show that if B is an a tom 
of ~p  that is a union of atoms B l ..... B s of atoms of ~ p + l  (which is a finer 
partition), then 

If B is in [~rqr+ 1(0), Cr(0)], we can apply r/F to B and the sets B i without 
changing the weights. Therefore we can assume that B is in 
[r/~(0), 7Fr/~+ 1(0)]. We can now apply 771 and we are reduced to the proof 
of the similar statement for the measure #r+l  but for atoms of the par- 
titions ~p+~ and ~p+l .  We can now proceed recursively until we reach 
p = 0. In this case the partitions to be considered are ~a~+p and ~ +  P, and 
the result follows immediately from the relation 0 -2 + 0. = 1. 

We now show that /~r is an invariant measure. We first observe that 
(4.5) is valid for any Borel s e t / b e c a u s e  the partitions (~a~)p~ .~ generate the 
Borel 0.-algebra. Therefore, it is enough to show that the measure is 
invariant on all the atoms of the partitions ~ap. The proof  is recursive, i.e., 
we shall show that for all r e ~, the measure/,~ is invariant on the atoms of 
~q ,  0 < ~ q ~ < p - 1 ,  that do not contain 0 (the case p = 2  is easy to check 
using the definition of/t~). Assume now K e ~ , ,  and K ~  [q~(0), 0]. We 
have 

~r( ~r( K) ) = #,01~( r K) ) ) -= I~r(rl,( ~ (~ ,L  ) ) ) 

since ~ ( K )  m [a~r/r + 1(0), ~ (0 ) ] ,  and L = c~ I K e  ~p+ l  1. Therefore [using 
(4.4) and the recursion hypothesis] we have 

/~(~r(K)) =/z~(,~/~+ ~(L)) - 0./~r + l(~r+ I(L)) 

= 0-/z~ +l (L) = 0.bt~ + 1(c~ 1K) 

= ~ ( K )  

Similarly, if K ~  [-0, ~r/~+ 1(0)], we have 

]2r(Ylr(K) ) =- ]2r(qr(O~rL ) ) ~- #r(O~r~r + I( L ) ) 

= 0-#r+ l (~r+ l(]~)) = 0-~r+ l (L)  

= #,.(K) 

where L = ~ r l ~ p L l l .  | 
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Notice that from the uniqueness of the invariant measure it also 
follows that y~ is the Bowen Ruelle measure. 

We now start the application of the results of the previous sections. 
Let (~, r/) ~ M, and # the associated invariant measure. We define a map g 
by 

g rc,t(o),,l(~(o))l(x) = ~z; ix, g [ E,(r = 0 ~ - l r / ( X )  

Let ~ be the partition constructed as in Section 2 for the above map g. We 
have the following result. 

Theorem 4.5. For any real number fi the following limit exists and 
defines a universal function F: 

F(fl)= lira - n  11og2 ~ j2(I) ~ 
n ~ o a  l e ?j~n 

This theorem follows directly from the results in Section 2 if (4, r/) is the 
fixed point of the renormalization. If not, we have to use, as in the case of 
the period doubling, the exponentially fast convergence of the successive 
renormalizations. 

We shall now show that F is C 1. As before, this will be done by coding 
the problem to a problem of statistical mechanics. For a fixed element 
(4, r/) ~ M we shall first introduce a coding of the points of the circle. We 
shall denote by T the matrix 

f2 will denote the phase space of the subshift of {0, 1 } ~ associated with the 
incidence matrix T. More precisely, s is the space of sequences (%.)j~ ~, 
with % ~  {0, 1} and the constraint that a 1 is followed by a 0. It is easy to 
show that f2 is invariant by the shift 50. 

Pro0osition 4.6. There is a countable set E c  Jr/(0), ~(0)] and a 
continuous map h: f2 ~ Jr/(0), 4(0)] such that: 

(i) 
(ii) 

(iii) 

h -1 is injective (on Jr/(0), 4(0)]). 

I f x e E ,  Card{h ~(x)=2}. 

hoSPn=R,,oh on f2\h-l(E),  where R,, is a map 
It/n(0), 4,,(0)] into [r/(0), 4(0)] which is equal 
R~0~ . . . . .  R (. 1), and the map R (jl from [r/j(0),~/(0)] 
Jr/j+ 1(0), ~j+ 1(0)] is defined by 

R(J)(x ) = {~ f  Ix if x ~ Jr/j(0), r/j(~j(0))] 
c~f*r/j(x) if x e  ]r/j(~j(0)), ~j(0)] 

from 
to 

to 
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Proof. If we consider the fixed point of the renormalization, this is a 
well-known result in the theory of expanding Markov  maps/27) If we are 
not at the fixed point, but on the stable manifold, the same result follows 
from the exponentially fast convergence to the fixed point. | 

We shall now construct on ~2 a Gibbs state indexed by two real 
numbers u and v whose j t h  potential is given by the function 

where 

co ~ u log IR(Jr(h(co))l + vO(~Jco) 

~'log a if coo = 0 
0(co) = (2  log o- if coo = 1 

Notice that R (j)' converges exponentially fast to the function R'  associated 
to the fixed point of the renormalization transformation. Since log ]R'l is 
bounded above and below, it follows from standard results (27/that to each 
(~, r/) ~ M and/3 e R we can associate a unique Gibbs state with the above 
potentials. Moreover, for a fixed couple (u, v) all these Gibbs measures are 
equivalent to the Gibbs measure of the fixed point of the renormalization 
transformation. We shall denote by Go(u, v) the (universal) free energy. 
Note that GD is C ~ in (u, v). The partition ~0  introduced above is easily 
seen to be identical with the partition ~ of Section 2. The following result 
is now the analog of a theorem of Vul et al. ~3~ for the case of period 
doubling. 

Propos i t ion  4.7. For  any element (~, ~/) of M we have 

lim n ~log ~ ]I[~=Fo(/3) 

Proof. It is easy to verify that if I is an a tom of ~o ,  then there is a 
sequence el ..... e, of 0 and 1 such that 

I =  { x l h - l ( x ) i = e j f o r  j =  1 ..... n} 

From Lemma 2.1 and Theorem 4.1 it follows that there is a finite constant 
C3 which is independent of n such that if x and y belongs t o / ,  then 

C ;  1 IR'n(x)l < Ig'n(y)l < C3 IR'n(x)l 

(this is obvious from the chain rule). F rom the equality 
R. ( I )  = It/(0), ~(0)], we deduce that for some finite constant C2 indepen- 
dent of n, we have for any a tom I of D ~ the bound 

C21lg'n(x)l ~ l l l<~C2lg 'n (x ) l  1 V x e I  
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The result now follows from our definition of the potentials for the Gibbs 
state of free energy G~(u, v). | 

It is easy to verify that D2 GD ~ 0. We can now apply Proposition 2.4 
and Corollary 2.5 to conclude that F is C 1. From the results in Section 3 
we conclude that the Hausdorff dimension of the singularities of/z are given 
by the universal function which is the Legendre transform of F. 
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